Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Naghmana Rashid, ${ }^{\text {a }}$ * Mashooda Hasan, ${ }^{\text {a }}$ Nurdiyana M. Yusof ${ }^{\text {b }}$ and Bohari M. Yamin ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan, and ${ }^{\mathbf{b}}$ School of Chemical Sciences and Food Technology, Univeriti Kebangsaan Malaysia, UKM 43500 Bangi Selangor. Malaysia

Correspondence e-mail: nrk_chem@yahoo.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.088$
$w R$ factor $=0.221$
Data-to-parameter ratio $=12.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1-(4-Methylphenylsulfonyl)-5-nitro-2-[(E)-prop-1-enyl]-1H-benzimidazole

In the title compound, $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$, the p-tolylsulfonyl group is perpendicular to the benzimidazole fragment, and the propenyl group has a trans configuration about the olefinic double bond. The molecule is stablized by intramolecular $\pi-\pi$ interactions.

Comment

A large number of benzimidizole derivatives have been reported to possess tripanosomicidal actions and are active against diseases caused by protozoa. Some of them have been shown to possess potent and selective activity against Helicobacter pylori which is the leading cause of chronic gastritis and peptic ulcer disease and is associated with certain types of gastric cancer (Bjorkholm et al., 2003; Suerbaum \& Michetti, 2002). In view of the broad range of medicinal activities of benzimidazole derivatives, the title compound, (I), was synthesized and we report its structure here.

The benzimidazole fragment $(\mathrm{C} 1-\mathrm{C} 7 / \mathrm{N} 1 / \mathrm{N} 2)$ is planar, with a maximum deviation from the mean plane of 0.015 (5) \AA for atom C3. The propenyl (C7-C10) and p-tolylsulfonyl (C11C17/S1) fragments are planar, with maximum deviation of 0.038 (1) \AA for atom S1 from the least-squares plane of the p tolylsulfonyl fragment. The propenyl fragment makes a dihedral angle of $6.9(7)^{\circ}$ with the benzimidazole ring system. The p-tolylsulfonyl fragment is perpendicular to the benzimidazole ring system, with a dihedral angle of $79.9(2)^{\circ}$. The bond lengths and angles are in normal ranges (Allen et al., 1987).

The molecule is stabilized by intramolecular hydrogen bonds (Table 1). There are also $\pi-\pi$ interactions between the imidazole [C1-C7/N1/N2; symmetry code: (i) $-x, 1-y,-z]$ and benzene [C1-C6; symmetry code: (ii) $1-x, 1-y,-z$] rings, with a distance between the centroids of $3.532 \AA$.

Experimental

Equimolar quantities of 4-nitro-1,2-phenylenediamine and crotonic acid were refluxed in $4 N \mathrm{HCl}$ to synthesize 5 -nitro-2-(prop-1-enyl)benzimidazole as reported previously (Hasan et al., 1990). 5-Nitro-

2-(prop-1-enyl)benzimidazole ($1.58 \mathrm{~g}, 0.007 \mathrm{~mol}$) was dissolved in $10 \% \mathrm{NaOH}(25 \mathrm{ml})$. A concentrated solution of p-tolylsulfonyl chloride $(1.38 \mathrm{~g}, 0.007 \mathrm{~mol})$ in acetone $(5 \mathrm{ml})$ was then added. The mixture was cautiously shaken in a conical flask until complete separation of the product had occurred. The solid product was filtered off, washed with water and recrystallized from ethanol (yield: $70 \%, 1.95 \mathrm{~g} ;$ m.p. 417 K$)$.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$
$M_{r}=357.38$
Triclinic, $P \overline{1}$
$a=7.421(2) \AA$
$b=9.629(2) \AA$
$c=13.144(4) \AA$
$\alpha=68.962(5)^{\circ}$
$\beta=85.274(4)^{\circ}$
$\gamma=71.978(5)^{\circ}$

$$
\begin{aligned}
& V=833.2(4) \AA^{3} \\
& Z=2 \\
& D_{x}=1.424 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.22 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.33 \times 0.23 \times 0.21 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD areadetector diffractometer ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.930, T_{\text {max }}=0.954$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.088$
$w R\left(F^{2}\right)=0.221$
$S=1.17$
2923 reflections
228 parameters
H-atom parameters constrained

Table 1
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C5-H5 \cdots O3	0.93	2.37	$2.920(6)$	118
C8-H8 34	0.93	2.30	$2.940(7)$	126

H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93$ and $0.96 \AA$ for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}(\mathrm{C})$, where $x=1.5$ for methyl and $x=1.2$ for other H atoms.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for

Figure 1
The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.
publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank both Allama Iqbal Open University and Universiti Kebangsaan Malaysia for a research grant and laboratory facilities.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bjorkholm, B., Falk, P., Engstrand, L. \& Nyren, O. (2003). J. Intern. Med. 253, 102-119.
Bruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.
Hasan, M., Malik, F., Alvarez, M. C. G., Yunus, U., Rashid, N. \& Maqbool, Z. (1990). J. Chem. Soc. Pak. 1, 80-83.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97, University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Suerbaum, S. \& Michetti, P. (2002). N. Engl. J. Med. 347, 1175-1186.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

